CYCLE-SUPERMAGIC COVERINGS AND DECOMPOSITION OF SOME GRAPHS

N. T. Muthuraja and P. Selvagopal

Department of Mathematics, Cape Institute of Technology, Levengipuram, Tamilnadu, INDIA
E-mail: bareeshraja@yahoo.com, ps gopaal@yahoo.co.in,

ABSTRACT: A simple graph $G = (V, E)$ admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. Further if all the subgraphs in the covering are edge-disjoint then the covering is said to be an H-decomposition of G. The graph G is said to be H-magic if there is a total labeling $f : V \cup E \rightarrow \{1, 2, 3, \ldots, |V| + |E|\}$ such that for each subgraph $H' = (V', E')$ of G isomorphic to H, we have $\sum_{v \in V'} f(v) + \sum_{e \in E'} f(e) = m(f)$ is constant and in this case f is called a H-magic labeling. When $f(V) = \{1, 2, |V|\}$, then G is said to be H-supermagic. An H-decomposition of G is said to be an H-(super)magic decomposition of G if G has an H-(super)magic labeling. In this paper, we prove that the square graphs of bistar, path, cycle and the middle graph of cycle are C_3-supermagic. Further we show that the shadow graph of bistar admits C_4-supermagic decomposition and the middle graph of cycle admits C_3-supermagic decomposition.

Keywords: Total labeling, H-covering, H-supermagic covering, H-decomposition, H-supermagic decomposition. AMS Subject Classification(2010): 05C78.

1. INTRODUCTION

The concept of H-magic graphs was introduced by A. Gutiérrez and A. Lladó in [2]. A family $\mathcal{F} = \{H_1, H_2, \ldots, H_k\}$ of different subgraphs of a graph G is an edge-covering of G if each edge of $E(G)$ belongs to at least one of the subgraphs H_i, $1 \leq i \leq k$. Then, it is said that G admits an (H_1, H_2, \ldots, H_k)-edge covering. If every H_i is isomorphic to a given graph H, then we say that G admits an H-covering.

If all subgraphs in the covering are edge-disjoint, the covering is also called an H-decomposition of G.

Suppose that $G = (V, E)$ admits an H-covering (or H-decomposition). We say that a bijective function $f : V \cup E \rightarrow \{1, 2, 3, \ldots, |V| + |E|\}$ is an H-magic labeling of G if there is a positive integer $m(f)$, which we call magic sum, such that for each subgraph $H' = (V', E')$ of G isomorphic to H, we have $f(H') = \sum_{v \in V'} f(v) + \sum_{e \in E'} f(e) = m(f)$. If $f(V) = \{1, 2, \ldots, |V|\}$, we say that f is a H-supermagic labeling. An H-covering (or decomposition) of G is said to be an H-(super)magic covering (or decomposition) of G if G has an H-(super)magic labeling. The constant value that every copy of H takes under f in the case of H-supermagic labeling is denoted by $s(f)$.

In [2], A. Gutiérrez and A. Lladó studied the families of complete and complete bipartite graphs with respect to the star-magic and star-supermagic properties and proved that the star $K_{1,n}$ is $K_{1,h}$-supermagic for any $1 \leq h \leq n$, the complete graph K_n is not $K_{1,h}$-magic for any $1 < h < n - 1$, the complete bipartite graph $K_{n,n}$ is not $K_{1,h}$-magic for any $1 < h < n$ but is $K_{1,n}$-magic for $n \geq 1$. The complete bipartite graph $K_{n,n}$ is not $K_{1,h}$-supermagic for any integer $n > 1$ and for any pair of integers $1 < r < s$, the complete bipartite graph $K_{r,s}$ is $K_{1,h}$-supermagic if and only if $h = s$. They also proved that the path P_n is P_{h}-supermagic for any integer $2 \leq h \leq n$, the cycle C_n is P_{h}-supermagic for some h. They also provided constructions of infinite families of H-magic graphs for an arbitrary given graph H.
A. Lladó and Moragas [8] proved that the wheel W_n is C_3-supermagic for n is odd, the windmill $W(r; k)$ is C_r-supermagic, subdivided wheel $W_n(r; k)$ is C_{2r+4}-magic and $\theta_n(p)$ is C_{2p}-supermagic. In [9] T. K. Maryati et al. investigated P_h-supermagic labelings of some classes of trees such as the subdivision of stars, shrubs, and banana tree. C_3-supermagic labelings of generalized antiprism, triangular ladder, fan and C_4-supermagic labelings of prism and ladder graph can be found in [10], [11], [5] and [6]. Jeyanthi and Selvagopal proved that for an arbitrary 2-connected simple graph H the chain graph [3], one point union of n copies of H, the graph linear garland $LG_n(H)$ [7] and edge amalgamation of a finite number of graphs isomorphic to H [4] are H-supermagic. In [4] they have also constructed two families of star-supermagic graphs. Same results were also proved by several authors in different methods.

We use the following notations. For any two integers $m < n$, we denote by $[m, n]$, the set of all consecutive integers from m to n. For any set $\mathbb{I} \subseteq \mathbb{N}$ we write, $\Sigma \mathbb{I} = \sum_{x \in \mathbb{I}} x$ and for any integers $k, k + \mathbb{I} = \{k + x : x \in \mathbb{I}\}$. Thus $k + [m, n]$ is the set of consecutive integers from $k + m$ to $k + n$. It can be easily verified that $\Sigma(k + \mathbb{I}) = k|\mathbb{I}| + 1$. If $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ is a partition of a set X of integers with the same cardinality then we say \mathbb{P} is an k-equipartition of X. If f is a total labeling on $G = (V, E)$ we denote $f(V) = \sum_{v \in V} f(v), f(E) = \sum_{e \in E} f(e)$ and $f(G) = \Sigma f(V) + \Sigma f(E)$.

Definition 1.1. [1] The bistar $B_{m,n}$ is the graph obtained by joining the centers of two stars $K_{1,m}$ and $K_{1,n}$ with an edge.

Definition 1.2. [1] The shadow graph $D_2(G)$ of a connected graph G is constructed by taking two copies of G, G' and G'' and joining each vertex u' in G'' to the neighbours of the corresponding vertex v' in G'.

Definition 1.3. [1] For a simple connected graph G the square of the graph G is denoted by G^2 and is defined as the graph with the same vertex set as of G and two vertices are adjacent in G^2 if they are at a distance 1 or 2 apart in G.

Definition 1.4. [1] The middle graph $M(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if either if they are adjacent edges of G or one is a vertex of G and other is an edge incident with it.

Lemma 1.5. [4] If h is even, then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \cdots, X_k\}$ of $X = [1, hk]$ such that $\Sigma X_r = \frac{h(hk + 1)}{2}$ for $1 \leq r \leq k$. Thus, the subsets sum are equal and is equal to $\frac{h(hk + 1)}{2}$.

2. C_3-Supermagic Covering

In this section we prove that the square graphs of Bistars, paths and cycles are C_3-supermagic. Also we prove that the middle graph of cycles are also C_3-supermagic.

Theorem 2.1. The graph $B_{m,n}^2$ is C_3-supermagic for all $m, n \geq 1$.

Proof. Let $B_{m,n}$ be the bistar obtained by joining the centers of two stars $K_{1,m}$ and $K_{1,n}$ with an edge. Let V be the vertex set and E be the edge set of the bistar $B_{m,n}^2$. Then, $V = \{u, v, u_i, v_i : 1 \leq i \leq m, 1 \leq j \leq n\}$ where u and v are the centers of $K_{1,m}$ and $K_{1,n}$ respectively and u_i and v_i are the pendant vertices of $K_{1,m}$ and $K_{1,n}$ respectively and $E = \{uv, uu_i, vuv_i, vv_i : 1 \leq i \leq m, 1 \leq j \leq n\}$. We have $|V| = m + n + 2$ and $|E| = 2(m + n) + 1$.

For our convenience we rename the pendant vertices of the stars as follows: \(w_i = u_i \), for \(1 \leq i \leq m \) and \(w_{m+i} = v_i \), for \(1 \leq i \leq n \). Therefore, \(V = \{ w_i : 1 \leq i \leq m + n \} \). Let \(H_i \) be the 3-cycle uwivu for \(1 \leq i \leq m + n \).

Clearly \(\{ H_i : 1 \leq i \leq m + n \} \) is a \(C_3 \)-covering for \(B_{m,n}^2 \). We prove the theorem in two cases.

Case (i): \(m \) and \(n \) are of different parity.

Define a total labeling \(f : V \cup E \to \{1, 2, \ldots, m+n\} \) as follows.

\[
f(w_i) = m + n + 1 - i \quad \text{for} \quad 1 \leq i \leq m + n;
\]

\[
f(u) = m + n + 1 \quad \text{and} \quad f(v) = m + n + 2.
\]

For \(1 \leq i \leq \frac{m+n-1}{2} \),

\[
f(H_i) = f(u) + f(w_i) + f(v) + f(uw_i) + f(vw_i) + f(uv)
= m + n + 1 + m + n + 2 + m + n + 1 - i + \frac{3(m + n) + 5}{2} - i
+ 2(m + n) + 2 + 2i + 3(m + n + 1)
= 9(m + n + 1) + \frac{m+n+5}{2}.
\]

For \(\frac{m+n-1}{2} \leq i \leq m + n \),

\[
f(H_i) = f(u) + f(w_i) + f(v) + f(uw_i) + f(vw_i) + f(uv)
= m + n + 1 + m + n + 2 + m + n + 1 - i + \frac{5(m + n) + 5}{2} - i
+ m + n + 2 + 2i + 3(m + n + 1)
= 9(m + n + 1) + \frac{m+n+5}{2}.
\]
Thus, \(f(H_i) = 9(m + n + 1) + \frac{m + n + 5}{2} \) which is a constant for \(1 \leq i \leq m + n \).

Hence, \(\{H_i: 1 \leq i \leq m + n \} \) is a \(C_3 \)-supermagic covering for \(B_{m,n}^2 \) and \(f \) is a \(C_3 \)-supermagic labeling with supermagic sum \(9(m + n + 1) + \frac{m + n + 5}{2} \).

Case (ii): \(m \) and \(n \) are of same parity.

Define a total labeling \(f: V \cup E \to \{1, 2, \cdots, m + n\} \) as follows.

\[
\begin{align*}
 f(w_i) &= m + n + 1 - i \quad \text{for} \quad 1 \leq i \leq m + n; \\
 f(u) &= m + n + 1 \quad \text{and} \quad f(v) = m + n + 2.
\end{align*}
\]

\[
\begin{align*}
 f(uw_i) &= \begin{cases}
 \frac{3(m+n+2)}{2} - i & \text{for} \quad 1 \leq i \leq \frac{m+n-1}{2} \\
 \frac{5(m+n)+8}{2} - i & \text{for} \quad \frac{m+n+1}{2} \leq i \leq m + n
 \end{cases} \\
 f(vw_i) &= \begin{cases}
 \frac{2(m+n)+3+2i}{2} & \text{for} \quad 1 \leq i \leq \frac{m+n-1}{2} \\
 m + n + 2 + 2i & \text{for} \quad \frac{m+n+1}{2} \leq i \leq m + n
 \end{cases}
\end{align*}
\]

and \(f(uv) = \frac{3(m+n)}{2} + 3 \).

We can easily prove that \(f(H_i) = 8(m + n) + 13 \) which is a constant for \(1 \leq i \leq m + n \). Hence, \(\{H_i: 1 \leq i \leq m + n \} \) is a \(C_3 \)-supermagic covering for \(B_{m,n}^2 \) and \(f \) is a \(C_3 \)-supermagic labeling with supermagic sum \(8(m + n) + 13 \).

From both the cases we have \(B_{m,n}^3 \) is \(C_3 \)-supermagic for all \(m, n \geq 1 \).

Illustration 2.2. \(C_3 \)-supermagic labelings of \(B_{4,3}^2 \) and \(B_{4,4}^2 \) are given in Figure 1(a): C3-supermagic labelings of \(B_{4,3}^2 \) with supermagic sum 78.
Theorem 2.3. P_n^2 is C_3-supermagic for $n \geq 4$.

Proof. Let $P_n = v_1 v_2 e_2 \cdots v_{n-1} e_{n-1} v_n$ be a path. Then $e_i = v_i v_{i+1}$ for $1 \leq i \leq n-1$. Let P_n^2 be the square graph of P_n. Let V be the vertex set and E be the edge set of P_n^2. Then, $V = \{v_1, v_2, \ldots, v_n\}$ and $E = \{e_i : 1 \leq i \leq n-1\} \cup \{e'_j : 1 \leq j \leq n-2\}$ where $e_i = v_i v_{i+1}$ and $e'_j = v_j v_{j+2}$. $|V| = n$ and $|E| = 2n-3$.

Define a total labeling $f : V \cup E \rightarrow \{1, 2, \ldots, 3n-3\}$ as follows.

$f(v_i) = i$ for $1 \leq i \leq n$,

$f(e_i) = 2n-i$ for $1 \leq i \leq n-1$,

$f(e'_i) = 3n-2-i$ for $1 \leq i \leq n-2$.

Let H_i be the 3-cycle $v_i v_{i+1} v_{i+2} e'_i v_i$ for $1 \leq i \leq n-2$. Then $\{H_1, H_2, \ldots, H_{n-2}\}$ is a C_3-covering for P_n^2.

\[
f(H_i) = f(v_i) + f(e_i) + f(v_{i+1}) + f(e_{i+2}) + f(e'_i) = i + 2n - i + i + 1 + 2n - i - 1 + i + 2 + 3n - 2 - i = 7n.
\]

Hence, $f(H_i) = 7n$ which is a constant for $1 \leq i \leq n-2$. Further, $f(V) = \{1, 2, \ldots, |V| + |E|\}$. Hence, $\{H_1, H_2, \ldots, H_{n-2}\}$ is a C_3-supermagic covering and f is a C_3-supermagic labeling with supermagic sum $7n$. Therefore, the square graph P_n^2 is C_3-supermagic for $n \geq 4$.

Illustration 2.4. C_3-supermagic labelings of P_n^2 is given in Figure 2.

Theorem 2.5. C_n^2 is C_3-supermagic for $n \geq 7$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of the cycle C_n where $n \geq 7$. Let V be the vertex set and E be the edge set of C_n^2. Then $V = \{v_i : 1 \leq i \leq n\}$ and $E = \{v_i v_{i+1}, v_i v_{i+2} : 1 \leq i \leq n\}$ where the for i is taken modulo n. Note that $|V| = n$ and $|E| = 2n$.

Figure 1(b): C_3-supermagic labelings of B_4^2 with supermagic sum 77.
Define a total labeling $f : V \cup E \rightarrow \{1, 2, \cdots, 3n\}$ as follows:

$$f(v_i) = i \text{ for } 1 \leq i \leq n,$$

$$f(v_iv_{i+1}) = 2n - i \text{ for } 1 \leq i \leq n - 1,$$

$$f(v_nv_1) = 2n,$$

$$f(v_iv_{i+2}) = 3n - i + 1 \text{ for } 1 \leq i \leq n, \text{ } i \text{ is taken modulo } n.$$

Let H_i be the 3-cycle $v_iv_{i+1}v_{i+2}$ for $1 \leq i \leq n$ and the subscript i is taken modulo n. Then $\{H_1, H_2, \cdots, H_n\}$ is a C_3-covering for C_n^2.

$$f(H_i) = f(v_i) + f(v_{i+1}) + f(v_{i+2}) + f(v_{i+1}v_{i+2}) + f(v_{i+2}) + f(v_{i+1}v_1) = i + 2n - i + i + 1 + 2n - i - 1 + i + 2 + 3n - i + 1 = 7n + 3.$$

Hence, $f(H_i) = 7n + 3$ which is a constant for $1 \leq i \leq n$. Further, $f(V) = \{1, 2, \cdots, |V| + |E|\}$. Hence, $\{H_1, H_2, \cdots, H_n\}$ is a C_3-supermagic covering and f is a C_3-supermagic labeling with supermagic sum $14n + 3$.

Therefore, the square graph C_n^2 is C_3-supermagic.

Figure 2: C_3-supermagic labelings of $P_n^2 \times P_n$ with supermagic sum 49.

Figure 3: C_3-supermagic labelings of C_n^2 with supermagic sum 59.
Theorem 2.6. If \(C_n \) is a cycle graph then the middle graph of the cycle graph \(M(C_n) \) is \(C_3 \)-supermagic.

Proof. Let \(v_1, v_2, \cdots, v_n \) be the vertices of the cycle \(C_n \) and \(v'_1, v'_2, \cdots, v'_n \) be the newly inserted vertices corresponding to the \(n \) edges \(e_1, e_2, \cdots, e_n \) of \(C_n \) to obtain \(M(C_n) \).

Let \(V \) be the vertex set and \(E \) be the edge set of \(M(C_n) \). Then \(V = \{ v_i, v'_i : 1 \leq i \leq n \} \) and \(E = \{ e_i : 1 \leq i \leq n \} \cup \{ v'_i v_{i+1}, v'_i v'_i : 1 \leq i \leq n - 1 \} \cup \{ v'_n v'_1 : 1 \leq i \leq n - 1 \} \). Note that \(|V| = 2n \) and \(|E| = 3n \).

Define a total labeling \(f : V \cup E \to \{ 1, 2, \cdots, 5n \} \) as follows:

\[
\begin{align*}
 f(v_i) &= i \text{ for } 1 \leq i \leq n, \\
 f(v'_i) &= 2n + 1 - i \text{ for } 1 \leq i \leq n, \\
 f(v_i v'_i) &= 2n + i \text{ for } 1 \leq i \leq n, \\
 f(v'_i v'_{i+1}) &= 4n - i \text{ for } 1 \leq i \leq n - 1, \\
 f(v'_n v'_1) &= 4n, \\
 f(v'_i v'_i) &= 4n + i \text{ for } 1 \leq i \leq n, \\
 f(v'_n v'_1) &= 5n.
\end{align*}
\]

Let \(H_i \) be the 3-cycle \(v'_i v'_{i+1} v_{i+1} \) for \(1 \leq i \leq n \) and the subscript \(i \) is taken modulo \(n \). Then \(\{ H_1, H_2, \cdots, H_n \} \) is a \(C_3 \)-covering for \(M(C_n) \).

\[
f(H_i) = f(v'_i) + f(v'_{i+1}) + f(v_{i+1}) + f(v'_i v_{i+1}) + f(v'_i v'_{i+1}) + f(v'_n v'_1) = 2n + 1 - i + 4n - i + i + 1 + 2n + i + 1 + 2n - i + 4n + i = 14n + 3.
\]

Hence, \(f(H_i) = 14n + 3 \) which is a constant for \(1 \leq i \leq n \). Further, \(f(V) = \{ 1, 2, \cdots, |V| + |E| \} \). Hence, \(\{ H_1, H_2, \cdots, H_n \} \) is a \(C_3 \)-supermagic covering and \(f \) is a \(C_3 \)-supermagic labeling with supermagic sum \(14n + 3 \). Therefore, the middle graph of the cycle graph \(M(C_n) \) is \(C_3 \)-supermagic.

Illustration 2.7. \(C_3 \)-supermagic labelings of \(M(C_8) \) is given in Figure 3.

![Figure 4: \(C_3 \)-supermagic labelings of \(M(C_8) \) with supermagic sum 115.](image-url)
3. CYCLE-SUPERMAGIC DECOMPOSITION

Theorem 3.1. The shadow graph $D_2(B_{m,n})$ of the bistar $B_{m,n}$ admits C_4-supermagic decomposition.

Proof. Consider two copies of $B_{m,n}$. Let \{u', v', u'', v'' : 1 \leq i \leq m \} and \{u''', v''' : 1 \leq i \leq n \}$ be the corresponding vertex sets of each copy of $B_{m,n}$. Let V be the vertex set and E be the edge set of $D_2(B_{m,n})$. Then $|V| = 2(m + n + 2)$ and $|E| = 4(m + n + 1)$.

Let H_i' be the 4-cycle $u_i'u_i''u_i''u_i'$ for $1 \leq i \leq m$, H_i'' be the 4-cycle $v_i'v_i''v_i''v_i'$ for $1 \leq i \leq n$ and $H = u'v'u''v'$. Then \{$H_i', H_i'', H_i : 1 \leq i \leq m, 1 \leq j \leq n \}$ is a C_4-decomposition for $D_2(B_{m,n})$.

By Lemma 1.5, \[1, 4(m + n + 1)] \] can be partitioned into \[(m + n + 1)\]-equipartitions $\mathbb{P} = \{X_1', X_2', \ldots, X_{m+n+1}'\}$ each containing four integers such that $\Sigma X_i' = 8(m + n) + 10$ for $1 \leq i \leq m + n + 1$. Add $2(m + n + 2)$ to $[1, 4(m + n + 1)]$. Then $[2(m + n + 2) + 1, 6(m + n) + 8]$ is partitioned into $m + n + 1$-equipartitions $\mathbb{P} = \{X_1, X_2, \ldots, X_{m+n+1}\}$ such that $\Sigma X_i = 8(m + n + 2) + 8(m + n) + 10 = 16(m + n) + 26$.

Define a total labeling $f : V \cup E \rightarrow \{1, 2, \ldots, 6(m + n) + 8\}$ as follows:

\[
\begin{align*}
 f(u_i') &= i + 2 & \text{for } 1 \leq i \leq m, \\
 f(u_i'') &= 2m + 2n + 3 - i & \text{for } 1 \leq i \leq m, \\
 f(v_i') &= m + i + 2 & \text{for } 1 \leq i \leq n, \\
 f(v_i'') &= m + 2n + 3 - i & \text{for } 1 \leq i \leq n, \\
 f(u'') &= 1, \\
 f(u''') &= 2(m + n) + 4, \\
 f(v') &= 2, \\
 f(v''') &= 2(m + n) + 3 \\
 f(E(H_i')) &= X_i & \text{for } 1 \leq i \leq m, \\
 f(E(H_i'')) &= X_i & \text{for } m + 1 \leq i \leq m + n, \\
 f(E(H)) &= X_{m+n+1}.
\end{align*}
\]

Then we have

\[
\begin{align*}
 f(H_i) &= f(u_i') + f(u_i'') + f(u''') + f(E(H_i')) \\
 &= 4(m + n) + 10 + 16(m + n) + 26 = 20(m + n) + 36 \text{ for } 1 \leq i \leq m, \\
 f(H_i'') &= f(v_i') + f(v_i'') + f(v''') + f(E(H_i'')) \\
 &= 20(m + n) + 36 \text{ for } 1 \leq i \leq n, \\
 f(H) &= f(u') + f(v') + f(u'') + f(v''') + f(E(H)) \\
 &= 20(m + n) + 36.
\end{align*}
\]

Hence, \{$H_i', H_i'', H_i : 1 \leq i \leq m, 1 \leq j \leq n \}$ is a C_4-decomposition for $D_2(B_{m,n})$ with supermagic sum $s(f) = 20(m + n) + 36$.

Illustration 3.2. C_4-supermagic decomposition of $D_2(B_{3,2})$ is given in Figure 5.
Theorem 3.3. The middle graph $M(C_n)$ of the cycle C_n admits C_3-supermagic decomposition.

Proof. The C_3-covering $\{H_1, H_2, \ldots, H_n\}$ we defined in Theorem 2.6 itself is a C_3-supermagic decomposition for $M(C_n)$. Hence, $M(C_n)$ admits a C_3-supermagic decomposition.

References

